
MDS (Microprocessor Development System)

A microprocessor development system (MDS) is an essential tool which facilitates the design,
evaluation and debugging of the user's microprocessor-based circuitry.

Hardware design, by its nature, belongs to the real world. The engineer can configure concrete
objects; he/she can physically touch, arrange and in general `poke about' a hardware circuit. This
makes testing a relatively attainable task, especially where only hardware is involved.
Hardware-oriented breadboards are essentially arrays of conductors arranged to speed up the
process of interconnection of the various elements making up the circuit. Normally the system is
split up into relatively independent modules, which may be constructed and tested in a self-
standing mode. These are then amalgamated gradually, with their interaction being closely
monitored.

Fig. 1

Software engineering, on the other hand, is an abstract science. There is nothing tangible about a
software circuit. At the physical level, software is a series of binary ones and zeros stored in
various locations in ROMs and RAMs. In order to configure the software system, the designer
must determine the sequence of 1s and 0s making up the program (the `software circuit'). A
software breadboard then is a development tool which facilitates the `interconnection' of binary
patterns in memory, and the running and testing of the interaction of these sequences with the
computer hardware. A software breadboard is usually called a Microprocessor Development
System (MDS).

As there is nothing physically to patch together, a software breadboard is of necessity somewhat
more abstract than its hardware equivalent. One requirement, no matter how elementary a MDS,
is a data terminal. This allows the designer to enter data (such as program instructions) into the
system, and for the system to output information. In very simple systems, data may be input via
switches on a hex keyboard (eg. the Heathkit ET3400 trainer) and output via 7-segment
displays. More sophisticated systems use a printer, visual display unit (VDU) or a computing
terminal (eg. a personal computer, PC).

In order to handle this data flow, a MDS will include a central processor unit (CPU). This CPU
is frequently the same processor as the hardware engineer is using, but not always. The CPU
will of course be programmed to handle the tasks involved in the MDS. Dedicated MDSs will
have at least a basic operating system programmed in ROM which is available on switch-on.
Other system programs may be loaded in from disc (eg. assemblers, editors and compilers). The
basic operating system is known as a monitor.

At the very simplest level, a monitor will allow the designer to examine the contents of given
memory locations; change this data (if in RAM); run a program, save/load your user's program
on disc, and use breakpoints to examine the progress of the program.

A skeleton of a basic development system is shown in Fig 1. The ROM-based monitor has an
associated RAM in which it stores variables used by its routines. The monitor itself is usually a
few Kbytes, whilst the scratchpad RAM is typically 1/4 Kbyte. The rest of the memory space is
used by peripheral devices, other system programs and, of course, the RAM used to store the
designer's program under development. RAM is used in preference to ROM, due to the ease of
changing the code. However, bulk storage is necessary, as RAM is volatile, unless the user is
prepared to type in the program each time the MDS is switched on.

Of course, for serious work, a more sophisticated MDS will be required. Typical enhancements
for a dedicated unit are onboard EPROM programming and disc mass backup. These are
normally plugged into a motherboard, forming the base of the MDS chassis. Where a PC is used
as the terminal, as in this case, the computer will supply many of these facilities such as disc
backup. One of the most intractable problems associated with MPU-based development, is
monitoring the interaction of the hardware and software system components. To provide this
facility, the MDS shown in Fig. 2 offers the technique of In-Circuit Emulation (ICE). As can
be seen from the figure, the ICE enables the designer to remove the MPU in the target hardware,
and replace it by the MDS itself. Thus the MDS pretends to the user's hardware that it is just an
ordinary MPU. However, all the debugging facilities of the MDS are now available to monitor
just what is happening. The ICE facility is very expensive, and is therefore usually only found
on the more sophisticated MDS. On PC-based configurations ICEs are available as an outboard
controlled via the serial port, and this is the configuration shown here.

Fig. 2

